Deformations of Weyl’s Denominator Formula: Six Conjectures and One Result

نویسندگان

  • Angèle M. Hamel
  • Ronald C. King
چکیده

We introduce a series of conjectured identities that deform Weyl’s denominator formula and generalize Tokuyama’s formula to other root systems. These conjectures generalize a number of well-known results due to Okada. We also prove a related result for B′ n that generalizes a theorem of Simpson. Résumé. Nous proposons une série de conjectures qui sont des déformations de la formule dénominateur de Weyl et qui généralisent la formule de Tokuyama à d’autres systèmes de racines. Ces résultats sont des généralisations de théorèmes bien connus dus à Okada. Nous donnons aussi la preuve d’un résultat pour B′ n qui est une généralisation d’un théorème de Simpson.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 6-vertex Model and Deformations of the Weyl Character Formula

We use statistical mechanics – variants of the six-vertex model in the plane studied by means of the Yang-Baxter equation – to give new deformations of Weyl’s character formula for classical groups of Cartan type B,C, and D, and a character formula of Proctor for type BC. In each case, the corresponding Boltzmann weights are associated to the free fermion point of the six-vertex model. These de...

متن کامل

Symplectic Shifted Tableaux and Deformations of Weyl's Denominator Formula for <Emphasis Type="Italic">sp</Emphasis>(2<Emphasis Type="Italic">n</Emphasis>)

A determinantal expansion due to Okada is used to derive both a deformation of Weyl’s denominator formula for the Lie algebra sp(2n) of the symplectic group and a further generalisation involving a product of the deformed denominator with a deformation of flagged characters of sp(2n). In each case the relevant expansion is expressed in terms of certain shifted sp(2n)-standard tableaux. It is th...

متن کامل

Sporadic groups and string theory

whereW is the Weyl group, ρ is the Weyl vector, and the product is over all positive roots α. This is a special case of Weyl’s character formula which says that the character of a finite dimensional representation is equal to a sum similar to the left hand side divided by the product on the right hand side; for the 1-dimensional representation the character is 1 so the sum is equal to the produ...

متن کامل

U–turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration

Alternating sign matrices with a U–turn boundary (UASMs) are a recent generalization of ordinary alternating sign matrices. Here we show that variations of these matrices are in bijective correspondence with certain symplectic shifted tableaux that were recently introduced in the context of a symplectic version of Tokuyama’s deformation of Weyl’s denominator formula. This bijection yields a for...

متن کامل

Weyl’s Character Formula for Representations of Semisimple Lie Algebras

Weyl’s character formula is a useful tool in understanding the structure of irreducible representations of semisimple Lie algebras. Even more important than the character formula itself is a corollary, the Weyl dimension formula, which gives a fairly simple expression for the total dimension of the representation in terms of the root system of the Lie algebra. Although the results discussed are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014